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Summary. A class of single-step methods is constructed for solving systems of 
differential equations. These methods are based on the use of interpolation and 
quadrature formulae, and are related to some implicit methods of Runge-Kutta 
type. Weight functions may be used to cope with difficult behaviour. 

1. Introduction. This article is a generalization in various ways of the use of 
quadrature formulae to integrate differential equations. The principle is well known 
and various special methods are available [1]. The main problem is to obtain ade- 
quate approximations to the function values at the chosen abscissae. In this respect 
linear differential equations are particularly amenable to treatment [2]. In the 
general case there appear to be a number of ways to obtain these approximations 
and one such approach is considered here. 

In some recent articles [3], [4], single-step methods of Runge-Kutta type were 
investigated, and it was pointed out that there is a connection with quadrature 
methods. These papers are, in some respects, an extension of investigations by 
Butcher [5], [6], who likewise obtained methods related to the use of quadrature 
formulae [6], [7]. It seems natural to attempt to reverse the analysis. In so doing, 
useful additional results are obtained and new methods become available. 

Thus we consider a system of nonlinear differential equations of arbitrary orders, 

(1.1) yr(nr)(t) = fr(t; y(t)) fr(t; {yp pm(t)}) , r = l(1)q, 

where 

y(t) = { yp( )(t) } = (Y1(0?(t) l * * ( . . ; y j0)(t) .. yq (nq-1)()) 

is a point in the real Euclidean N-space, RN, 

q 

N= >nr. 
r=1 

Initial values, y(x), are given for some value, x, of the real variable t, and approxi- 
mations, y(x + h), to the values y(x + 1h), are required for some given step length h. 

We are concerned with a set of s abscissae, ,u , i = 1(1)s, and define go = 0, /t8?+ 

= 1. For a given step length h, these abscissae define a closed interval (a, b), 

a= min {x}, b= max {xi, 
i=O(1) 8+1 i=O(1) 8+1 

Xi = x +gih, 2 i= O(1)s+1. 
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It is assumed that for some nonnegative integer p the derivatives, yr(nr+P)(t), 

r = 1 (1)q, are continuous for t E (a, b). Let z be a point in RN, 

Z = [m]} 2 

where the element z,p[i] corresponds with yp (np-n) (t) of y(t), and D some convex 
domain of RN containing the solution y(t), t G (a, b). Let the functions be real- 
valued mappings of RN+1 onto R1 satisfying the Lipschitz conditions, 

If,(t; z) -f,(t; w) I < L max IZ[ - WP[I 
(1.2) pmi r,p= l(1)q,m = 1(1)np, 

for z, w E D, t E (a, b). For a suitable domain D these various conditions ensure 
that the initial-value problem has a unique solution such that the derivatives 

Yr(v)(t) , r = 1(1)q, v = O(1)n, + p, 

are continuous in (a, b) [8, pp. 71-2]. 

2. Quadrature Methods. Define 

Tr[v] (ih) = Y r8h7 yr(nr-,v+r)(x) r = 1(1)q, v = 1(1)nr, 

where ,u lies in the closed interval I bounded by the greatest and least of ,u j, i- 

O(1)s + 1. We introduce weight functions Wr(t), and then integration by parts gives 

yr( t )(X + h) = Tr[,I(h) + ( hi)! jFr(X + 1tth)(1 - I)-lWr(X +1,uh)dA 

(2.1) Fr(t) = Wrl(t)yr 
(nr) (t) I 

for r = 1(1)q, v = n(lr. In a quadrature method the integrals are replaced by 
weighted sums, 

(2.2) gr(nr-)(x + h) = Trt '(h) + E a"x)Fr(xi) 

where the ,u1, i = 1(1)s, are selected abscissae, and the weights may be chosen so 
that the quadrature is exact if the functions, Fr(X + 1A), are polynomials in ,u of 
degree less than some given integer. Here we restrict attention to quadratures of 
interpolatory type and a single set of distinct abscissae. Even so, there are a number 
of approaches, of which two are considered. We could, however, use other integration 
rules such as the trapezoidal rule or methods based on the integration of rational 
functions. 

Let l(,u) be the polynomial of degree s, 
8 

= H te u-1 s 

and 1i(A.) the unique polynomials of degree s - 1, such that 
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Now we can interpolate either set of functions, 
(i) FT(X + 1,uh),2 r = l1(1)q,I 
(ii) (1 - i) '-lFr(X + uh) , r = v(1)q, v = l(l)nr. 

In the first case we have [9, pp. 164-5] 

ai= J -i () (1- w (x + 1uh)d,u, 

(2.3) Yr r (X + h) - -Jr(n rT (X + h) 

- !( h_ 1)! |~ l(y)(1 - J Fr(t)J W,W(x + ,uh)ds,4 

for r = 1(1)q, v = l(1)nr, and i'Qi) E (a, b) and depends also on x and h. Similarly, 
in the second case 

t[^] = ^(1- ir J lj(ii)Wr(X + ,uh)d,u, 
0 

(2.4) Y r(nr) (x + h) _ TY (X + h) 

S!(v- l )! fo l(,) [ d8 (x + h - t) -1Fr(t)J l w(x+ 
1uh)di. -dt t= (A') 

The second relation (2.4) seems to be particularly suitable for computation, since for 
fixed r, i, the parameters are given for all v iin terms of call. On the other hand, the 
error term in the first case is of higher order in h if v > 1. In general, the parameters 
depend on x, h, and r, and it is conventional to choose a unit weight function, 
eliminating this dependence. 

If a weight function, w(t), nonnegative in the closed interval (x, x + h) and inde- 
pendent of r, is chosen, the error terms can be improved. Select as abscissae, the 
zeros of the associated orthogonal polynomial of degree s defined on (0, 1). Then for 
example, in the second case [10, p. 152] 

(nr-v) (X + h) - ir(nr-) (X + h) = ( -; 

X dt-2 
I (X + h - t) Fr(t)}J l ()W( + Ah)cdl4 

t (a, b). Here we also have 

1 = V(l - Mi-l.iX r = 
V(1)q 

j' = 1(1)n7, i = 1(1)s, 

where the Xi are the corresponding Christoffel numbers [11, pp. 47-8]. For (i) an 
analysis shows that the error terms now remain of O(h28+l). 

The various error terms given depend on the existence of the integrals and the 
continuity of the derivatives involved. It is possible to relax the continuity require- 
ments [12, pp. 288-92]. 

Choose a unit weight function, and as abscissae the zeros of the Legendre poly- 
nomial of degree s, P8(2U - 1). Then the quadrature formulae can be made exact 
for given v, for yr(nr)(x + ,uh) a polynomial in ,u of degree less than 2s + 1 - v. This 
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is the best we can do (in this sense) if all the terms, y (n,-,)(x + h), are to be deter- 
mined. On the other hand, if we only want to compute YT(?) (x + h), this can be im- 
proved. We use a quadrature formula based on the orthogonal polynomials associ- 
ated with the weight function (1 -,)n -1 and the interval (0, 1). The quadrature is 
then exact for polynomials of degree less than 2s, though if the nr differ we require 
different quadrature formulae to achieve this. These results were also obtained in 
[3], [4]. Similar remarks apply to alternative weight functions, w(t) $ 1, but we are 
now concerned with the behaviour of Fr(t) rather than yr(nr)(t). Thus we can choose 
weight functions which will specifically cope with known difficult behaviour of the 
functions fr(t; y(t)). 

Before quadratures of the form (2.2) (or other integration rules) can be applied, 
approximations, 

(2.5) y (nr) (Xi) = Yr(nT (ni) - Er1 (Xi), r = 1 (1)q, i = 1(1)s, 

must be obtained. These values can be determined from the differential equations 
(1.1) provided adequate estimates, 

- (nr-v) (Xi) = Yr(nr-v) (X) - ErV] (x i) 

(2.6) r= 1(1)q, V= 1(1l)nr, i= 1(1)8, 

are known. Such estimates are, however, not usually known initially and this ap- 
proximation problem is fundamental in the application of quadrature methods. 

The approximations may be obtained by integration, using previously integrated 
points and some suitable integration rule. Alternatively, an extrapolation procedure 
could be applied using these points. Such methods are not, strictly, of single-step 
type. On the other hand, an explicit Runge-Kutta method may be used to give these 
approximations [1] but for high-order methods this requires explicit methods of high 
order, few of which are available. We discuss instead an alternative approach, and 
attempt to define the approximations (2.5) implicitly. Thus consider Pr(nr) (x + ,uh) 
as functions of ,u, uniquely determined (in some specified way) by the s values at pi, 
i = 1 (1)s. Then the estimates (2.6) can be obtained by integration in a way similar 
to (2.1), and the differential equations (1.1) now define the values (2.5) implicitly. 
The determination of the functions yrr(nr) (x + ,uh), and the choice of quadrature 
formula, characterize the method. The obvious way to determine the functions is to 
use the Lagrange interpolation formula, but we can also use other techniques such 
as rational function approximation and Hermitian interpolation. 

3. Lagrange Interpolation. Integration by parts gives 

yr( r)(xj) = Tr VI(i(jh) + hij)! | ( A--) V-Fr(X + Ah)Wr(X + ih)dA, 

for r = 1 (1)q, v = 1 (1)nr, j = 1(1)s + 1. We now interpolate either Fr(X + uth) or 
(ij - Ai) -Fr(X + ,uh) and integrate the interpolation polynomial. In the first case 
we obtain 

(3.1) yr(nrv) (xj) = Tr(VI (j jh) + (! )EriFr xi) + R[" (jh), 

for r = l(l)q, v = 1 (1)nr, j = 1 (1)s, where 
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= v f lj i (,u ji) (1 -A) VlWr(X + ,Ai,Ah)d,i, 

(3.2) 'pi 
z v-l d (3.) R (Ajh) =s!(-l)! I A )Aj - A) ds Fr(t) Wr(x + ,Ah)dAi 

From (3.2) we obtain 

(3.3) 
A 
i rii= fA A( - AYt) Wr(X + A.t,Ah)dA.t 

for j = 1 (1)s, r = 0(1)s - 1, and these equations provide an alternative definition 
for the X^. For a unit weight function they correspond with equations obtained by 
Butcher [61 for a system of first-order differential equations and by the author [4] for 
more general systems. Thus there is a close connection with implicit Runge-Kutta 
methods. 

In the second case (3.1) holds with 

(3.4) k[^] = v(1 - yi)r li(ijii)Wr(X + ,AjA,h)d,i, 

provided Aj 5 0 (and if j = Owe may take X[ )i = 0 for all r, i), 

Rr [VI (Ah) = h(s'- f l('i)[ds 8 (x + h - t) lFr(t)}] Wr(x + ,ih)d,A 

Again, the second method seems more suitable for computation in that 

(3.5) Xrji = (1 + 1/v)(1 - (i i/i j))X rjti, v = 1 (1)nr - 1, 

but the first method provides error terms of higher order in h for v > 1. 
Now define the approximate values (2.5) via the differential Eqs. (1.1), 

(3.6) Yr (x) = fr(xi;{Tp[m] (Ijh) + M! 
i n' 

for j = 1(1)s, r = 1 (1)q. Thus, in general, these values are defined implicitly and 
have to be determined iteratively. The differential equations (1.1), the Lipschitz 
conditions (1.2), and (2.5), (3.1) give 

lE [01 (xj) I < L max (Ajh) f ' -(xi)E 101 (xi) + Rm [m] (At h) 

r, p = 1 m()q, i = 1 (l)np, j = 1(l)s. If we define 

e = max IEr 1(Xj) I, X max E hvi .. l 4]iWr (xi) 
j ~~~~r, v,j i= 1 

for r = 1 v()q, v = 1(1)fnr, j = 1(l)s, then we have 

E(1 - LAlh) ? L max [RrV] (gjh) I 
r ,vj 

and hence at least E = O(hs+'). Much the same type of analysis shows that (3.6) has 
a unique solution for sufficiently small h, which may be determined iteratively [6]. 

If we use a quadrature of interpolatory type, the approximations determined 
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from (3.6) may be substituted into (2.2) to give 

Pr rV) (x + h) = Tr [V(h) + %Z at2wr (Xi)jr(r (xn) 
(3-7)~~~~~~~~~V i=l 

yr(nr-v)(X + h) - Pr(nr-v)(X + h) = O(hs+l) 

Indeed, if we use a method with parameters defined by (2.3) and (3.2), then if L XIhI 
< 1 

IYr(nr-v)(x + h) - Pr(nr-v)(x + h)l 

< F(l + 2saLIhIelhl) max | 1(,i) - ) _ iWr(X + )ldA 
- 1)! J,V0 

r = 1(1)q, v 1(1)nfr,j = 1(1)s + 1, where 

n = max IaV W]r-1(xi), F = max IFr(s) (t) , t E (a, b) 
r, i,v r, t 

The analysis is not sufficiently refined to show if we can do better than this by 
suitably choosing the abscissae. This is indeed the case (for a unit weight function) 
for a system of first-order equations [61 and special cases exist for higher-order equa- 
tions [3]. For a unit weight function the parameters are independent of x and h, and 
we can alternatively regard Eqs. (3.6) as defining an implicit Runge-Kutta type 
process [4]. 

The methods are particularly suitable for systems of linear equations. For then 
Eqs. (3.6) give a set of linear equations for the approximate values. 

A simple example which illustrates some of these remarks is the first-order non- 
linear differential equation 

2yi(l)(t) = -\t + V/(y1(t)), with yi(O) = 0. 

The Lipschitz condition does not hold in the vicinity of the origin, but this is not re- 
quired for the numerical solution. Further, there is a solution such that for small t, 
yi(t) = 0(t312) [13]. This suggests the use of a weight function w(t) = t"l2. Thus for 
thefirst step away from the origin (x = 0) we can use quadrature formulae based on 
the zeros of the Jacobi polynomial P8( l12)(2A - 1) [11, pp. 58-98]. With s = 2 the 
zeros are 

126u1 = 70-4 V 70, 126/2 = 70 + 4 < 70, 

and the Christoffel numbers are 

afl 
=IX \Ih 50- V70 X = Vh 50 V70 11 ~~150 12150 

From (3.2) or (3.4) we obtain 

16 + V70 16_-__\_70 
A111= VCuih) 30 , A122= V(,.2h) 30 30 

=4- V70 h4 4? V70 VGuih) 30 ' ) 30 
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Eqs. (3.6) give 

2y (xj) = v\Cujh) + [ jhfX'1w-1(xj)yj'1)(x1) + X I2w 1(x2) P'1 (X2) } ]1/2 

j= 1,2. 

Define Fj - w-1(xj)j0')(xj), j = 1, 2, and then 

4F12 - [120 + (,Alh)1/2(16 + /70)] + 1 = VCu1h) - \/7 F2 
30 ~~~~~~~~~~~30 

4F2 2 _ F [120 + (,A2h)12(16 - /70)] + 1 = V(,A2h) 4 + V/70 F,. YO ~~~~~~~~30 

With h = 0.25 we obtain, after a few iterations 

F1 = 0.67204 4902, F2 = 0.72888 3492, yi(0.25) = 0.05876 8305. 

We can compare this result with some obtained using the Heun method [10, p. 193]. 
With 20 steps of length 0.0125, the Heun method gives an appreciably poorer result. 
With h = 0.0625, our two-stage quadrature method gives, in one step, 

yg(0.0625) = 0.006653 7117 . 

The first eight terms of the series expansion about zero give 0.00664 2000, and the 
quadrature result appears almost as good as that given by the Heun method using 
50 steps, 0.006631 5805 [10, p. 193]. 

4. Further Remarks. The establishment of quadrature methods for arbitrary x, 
h, and general classes of weight functions involves considerable algebra. Even if the 
abscissae are fixed arbitrarily, integrals of the form (2.4), (3.2) have to be evaluated, 
and it is probably most convenient to do this on a computer. There seems to be little 
difficulty in devising a program to automate the process, provided integrals of the 
form 

J ,.w(x + /Ah)d/h, 

can be determined. 
Convergence of the methods has not been discussed. However, a proof given 

previously [4] carries over with only trivial changes. 
If the derivatives yr(nr+l)(t) are available in terms of yr(nr)(t) and known func- 

tions, then Hermitian interpolation can be used. Alternatively we may interpolate 
yr(nr-1)(t), using also yr(nr)(t). The same type of analysis holds and error terms 
O(h28+l) are obtained. Rational approximation methods could also be treated in a 
similar fashion. 
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